
This web scraping is a process employed to extract data from Superrar.com, Hashaxis.com,
and Rareable.com. We have leveraged a combination of Selenium for web automation, Celery
Workers for task distribution within a Django Rest application, and the parsing capabilities of
Beautiful Soup and SelectorLib to e�ectively scrape, �lter, and store data from these
websites.

Ensure that your development environment is equipped with the necessary tools and

libraries, including Django Rest, Selenium, Celery, SelectorLib, and Beautiful Soup.

VYGA- WEB SCRAPING
AND ADMIN PANEL

REPORT
 Overview

 Tools and Technologies
Selenium: A versatile web automation tool used for browser control and data retrieval.
Celery Workers: A distributed task queue system integrated with Django Rest, designed to
e�iciently distribute scraping tasks.
Django Rest Framework: A Django extension tailored for creating RESTful APIs.
SelectorLib: A web scraping library for creating and running web scraping robots.
Beautiful Soup: A Python library designed for parsing HTML and XML documents.
Rayobyte Residential Proxies: Rayobyte Proxies, speci�cally residential proxies, play a
pivotal role in ensuring the anonymity and reliability of your web scraping e�orts. These
proxies e�ectively mask your IP addresses, making it challenging for websites to trace
your scraping activities back to your original IP. Residential proxies, sourced from real IP
addresses of internet users, further enhance your web scraping capabilities.

 Workflow

 Environment Setup

 Defining Scraping Objectives

Clearly define the objectives of the scraping tasks to be performed on Superrar.com,

Hashaxis.com, and Rareable.com. These objectives may encompass extracting data such as

NFT details, pricing information, and source links.

Selenium is used to automate the interaction with the target websites. Here's a high-level

overview of the process for each task:

Celery Workers play a pivotal role in e�ciently distributing scraping tasks. Define individual

Celery tasks for each scraping objective, allowing for asynchronous execution to scrape

multiple pages concurrently.

Once you have secured the HTML source code of the web pages, Beautiful Soup is employed

for parsing and data extraction. This encompasses:

Utilize SelectorLib to create scraping robots that define the structure of the data you intend

to extract. This is achieved by defining CSS selectors for the relevant data elements and

storing these configurations in JSON files for each target website.

Execute the SelectorLib robots that have been configured, enabling the extraction of specific

data elements defined in your configurations. The extracted data is then structured for

storage.

 Implementing Selenium Automation

Launch a web browser (e.g., Chrome or Firefox) programmatically using Selenium.
Navigate to the target website(s).
Employ Selenium to interact with the website, including actions like clicking, scrolling,
and loading additional data.
Retrieve the HTML source code of the web pages.

 Task Distribution with Celery Workers

 HTML Parsing with Beautiful Soup

Locating and extracting data elements by parsing the HTML using HTML tags and
attributes.

 Creating SelectorLib Robots

 Executing SelectorLib Robots

 Data Storage in the Database

Store the scraped data within your Django database. Define appropriate database models

and schemas to accommodate the extracted data structure.

The Dashboard is a central hub within the web scraping system, providing users with a

comprehensive view of the scraped NFT data. It caters to both SuperAdmin and User roles,

o�ering di�erent levels of access and functionality.

Features:

1. NFT Ratio Bar Chart (Based on Source)

2. Most Viewed NFTs Table

3. New Account Details

4. Number of Sales (In Last 30 Days)

 Best Practices

Respect website terms of service and employ rate limiting to prevent overloading target
websites.
Utilize user agents and proxies to mitigate IP blocking risks.
Implement robust error handling to gracefully manage unexpected website changes or
connectivity issues.
Periodically update scraping robots and configurations to adapt to any alterations on the
target websites.

 Customized Admin panel

 Dashboard

Objective: Visual representation of the distribution of NFTs based on their source.
Visualization: A bar chart illustrating the ratio of NFTs from different sources.
Interaction:Users can hover over bars to view specific ratios.

Objective: Display a table showcasing the most viewed NFTs.
Sorting:Users can sort the table based on various columns.
Interaction:Clicking on a row provides detailed information about the selected
NFT.

Objective: Provide information about new user accounts.

Objective: Display the number of NFT sales within the last 30 days.

5. Average Basket Value (In Last 30 Days)

6. Chains in Collection

7. Dashboard Interface

Features:
User Categories:

Sidebar Options:

a) Dashboard:

b) All:

c) Chains:

d) Source:

Objective: Present the average value of baskets (collections) in the last 30 days.

Objective: Display the number of unique chains represented in the NFT collection

Layout: Organized and visually appealing dashboard layout with sections for each
feature.
Interactivity: Users can navigate between different sections seamlessly.

 Data Products

SuperAdmin: Full access and the ability to create additional SuperAdmins
using roles and permissions.
User: Limited access based on assigned roles, including create, update,
delete, and view permissions.

Accessible by any user.
Provides an overview of key system metrics.

Displays all scraped products.
Accessible to SuperAdmin and users with specific permissions.

Displays products categorized by chains or currency modes (e.g., Hbar,
Eth, Immutable X, Polygon).
Accessible to SuperAdmin and users with specific permissions.

e) Category:

f) Status:

g) Update/Scrapping:

h) Upload/Add Category:

i) Roles:

Web scraping serves as a potent means of acquiring valuable data from websites for a

multitude of purposes. This documentation has provided an insight into the process of

utilizing Selenium, Celery Workers, SelectorLib, and Beautiful Soup to scrape data from

Superrar.com, Hashaxis.com, and Rareable.com, with the end goal of storing it in a Django

database. When executed e�ectively, web scraping can yield invaluable data for analysis,

reporting, and further utilization.

Furthermore, the introduction of the Customized Admin Panel, featuring an enhanced

Dashboard and Data Products sections, provides a user-friendly interface for e�ciently

Displays products filtered by the source of scraping (e.g., Hash Axis,
Superrare, Rareable).
Accessible to SuperAdmin and users with specific permissions.

Displays products categorized by user-defined categories.
Accessible to SuperAdmin and users with specific permissions.

Filters products based on status (live or draft).
Accessible to SuperAdmin and users with specific permissions.

Initiates scraping of NFTs from di�erent sources or updates current
product details.
Accessible to SuperAdmin and users with specific permissions.

Adds products via CSV to a specific category or creates a new category.
Accessible to SuperAdmin and users with specific permissions.

Permission: Manages user roles and permissions and can update details
of users.
Create User: Creates new users, assigns roles, and sends login credentials
via email.
Accessible to SuperAdmin only.

 Conclusion

handling web scraping activities and delving into the scraped NFT data. The comprehensive

documentation ensures a clear understanding of user roles, features, sidebar options, and

detailed explanations of each block. Regular updates to this documentation are emphasized

to maintain clarity and accuracy in the utilization of the system for ongoing and future

endeavors.

